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Design Philosophy
u Leverage our experience with RC5: use

data-dependent rotations to achieve a
high level of security.

u Adapt RC5 to meet AES requirements
u Take advantage of a new primitive for

increased security and efficiency:
32x32 multiplication, which executes
quickly on modern processors, to
compute rotation amounts.

Description of RC6



Description of RC6
u RC6-w/r/b  parameters:

– Word size in bits:        w   ( 32 )( lg(w) = 5 )
– Number of rounds:       r   ( 20 )
– Number of key bytes:  b   ( 16, 24, or 32 )

u Key Expansion:
– Produces array  S[ 0 … 2r + 3 ]  of  w-bit

round keys.
u Encryption and Decryption:

– Input/Output in 32-bit registers A,B,C,D

RC6 Primitive Operations
A + B Addition modulo 2w

A - B Subtraction modulo 2w

A ⊕ B Exclusive-Or
A <<< B Rotate  A  left by amount in

            low-order  lg(w ) bits of B
A >>> B Rotate  A  right, similarly
(A,B,C,D) = (B,C,D,A)   Parallel assignment
A x B Multiplication modulo 2w

RC
5



RC6 Encryption (Generic)
    B = B + S[ 0 ]

D = D + S[ 1 ]
for  i  =  1  to  r  do
    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  lg( w )
        u  =  ( D  x  ( 2D + 1 ) )  <<<  lg( w )
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
        (A, B, C, D)  =  (B, C, D, A)
     }
A = A + S[ 2r + 2 ]
C =  C + S[ 2r + 3 ]

RC6 Encryption (for AES)
    B = B + S[ 0 ]

D = D + S[ 1 ]
for  i  =  1  to  20  do
    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
        (A, B, C, D)  =  (B, C, D, A)
     }
A = A + S[ 42 ]
C =  C + S[ 43 ]



RC6 Decryption (for AES)
    C =  C - S[ 43 ]

A =  A - S[ 42 ]
for  i  =  20  downto  1  do
    {
        (A, B, C, D)  =  (D, A, B, C)
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        C  =  ( ( C - S[ 2i + 1 ] ) >>> t ) ⊕ u
        A  =  ( ( A - S[ 2i ] ) >>> u ) ⊕ t
    }
 D = D - S[ 1 ]
 B = B - S[ 0 ]

Key Expansion (Same as RC5’s)
u Input:     array  L[ 0 … c-1 ] of input key words
u Output:   array S[ 0 … 43 ]  of round key words
u Procedure:

S[ 0 ] = 0xB7E15163
for  i = 1  to  43  do S[i] = S[i-1] + 0x9E3779B9
A = B = i = j = 0
for  s = 1  to  132  do
    {  A = S[ i ] = ( S[ i ] + A + B ) <<< 3
        B = L[ j ] = ( L[ j ] + A + B ) <<< ( A + B )
        i = ( i + 1 )   mod 44
        j = ( j + 1 )  mod c           }



From RC5 to RC6
   in seven easy steps

(1) Start with RC5
  RC5 encryption inner loop:
    for  i  =  1  to  r  do

      {
          A = ( ( A ⊕ B )  <<< B )  + S[ i ]
          ( A, B ) = ( B, A )
      }

Can RC5 be strengthened by having rotation
amounts depend on all the bits of B?



u Modulo function?
Use low-order bits of  ( B  mod d )
Too slow!

u Linear function?
Use high-order bits of  ( c x B )
Hard to pick  c  well!

u Quadratic function?
Use high-order bits of ( B x (2B+1) )
Just right!

Better rotation amounts?

B x (2B+1) is  one-to-one  mod 2w

Proof:  By contradiction.  If  B ≠ C  but
B x (2B + 1) = C x (2C + 1) (mod 2w)

then
    (B - C) x (2B+2C+1) = 0      (mod 2w)
But (B-C) is nonzero and (2B+2C+1) is
odd; their product can’t be zero!     o

Corollary:
B  uniform à B x (2B+1) uniform
(and high-order bits are uniform too!)



High-order bits of  B x (2B+1)
u The high-order bits of

f(B) = B x ( 2B + 1 )  =  2B2 + B
  depend on all the bits of  B .

u Let  B  =  B31B30B29 … B1B0   in binary.
u Flipping bit  i  of input  B

– Leaves bits  0 … i-1  of  f(B)  unchanged,
– Flips bit  i  of  f(B)  with probability one,
– Flips bit  j  of  f(B) ,  for j > i , with

probability approximately 1/2  (1/4…1),
– is likely to change some high-order bit.

  for  i  =  1  to  r  do
    {
        t = ( B x ( 2B + 1 ) ) <<< 5
        A = ( ( A ⊕ B )  <<< t )  + S[ i ]
        ( A, B ) = ( B, A )
     }

But now much of the output of this nice
multiplication is being wasted...

(2) Quadratic Rotation Amounts



  for  i  =  1  to  r  do
    {
        t = ( B x ( 2B + 1 ) ) <<< 5
        A = ( ( A ⊕ t )  <<< t )  + S[ i ]
        ( A, B ) = ( B, A )
     }

Now AES requires 128-bit blocks.
We could use two 64-bit registers, but
64-bit operations are poorly supported
with typical C compilers...

(3) Use  t, not B, as xor input

(4) Do two RC5’s in parallel
  Use four 32-bit regs (A,B,C,D), and do

RC5 on (C,D) in parallel with RC5 on (A,B):
   for  i  =  1  to  r  do

    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        A  =  ( ( A ⊕ t )  <<<  t )  +  S[ 2i ]
        ( A, B ) = ( B, A )
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        C  =  ( ( C  ⊕ u )  <<<  u )  +  S[ 2i + 1 ]

           ( C, D ) = ( D, C )
    }



(5) Mix up data between copies
   Switch rotation amounts between copies,

and cyclically permute registers instead of
swapping:
for  i  =  1  to  r  do
    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
        (A, B, C, D)  =  (B, C, D, A)
     }

One Round of RC6
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(6) Add Pre- and Post-Whitening
    B = B + S[ 0 ]

D = D + S[ 1 ]
for  i  =  1  to  r  do
    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
        (A, B, C, D)  =  (B, C, D, A)
     }
A = A + S[ 2r + 2 ]
C =  C + S[ 2r + 3 ]

    B = B + S[ 0 ]
D = D + S[ 1 ]
for  i  =  1  to  20  do
    {
        t  =  ( B  x  ( 2B  + 1 ) )  <<<  5
        u  =  ( D  x  ( 2D + 1 ) )  <<<  5
        A  =  ( ( A ⊕ t )  <<<  u )  +  S[ 2i ]
        C  =  ( ( C  ⊕ u )  <<<  t )  +  S[ 2i + 1 ]
        (A, B, C, D)  =  (B, C, D, A)
     }
A = A + S[ 42 ]
C =  C + S[ 43 ]

(7) Set r = 20 for high security

Final RC6

(based on analysis)



RC6 Implementation Results

Less than two clocks per bit of plaintext !

Java Borland C Assembly

Setup 110000 2300 1108

Encrypt 16200 616 254

Decrypt 16500 566 254

CPU Cycles / Operation



Java Borland C Assembly

Setup 1820 86956 180500

Encrypt 12300 325000 787000

Decrypt 12100 353000 788000

Operations/Second (200MHz)

Java Borland C Assembly

Encrypt 0.197
1.57

5.19
41.5

12.6
100.8

Decrypt 0.194
1.55

5.65
45.2

12.6
100.8

Encryption Rate (200MHz)
MegaBytes / second
MegaBits   / second

Over 100 Megabits / second !



On an 8-bit processor
u On an Intel MCS51  ( 1 Mhz clock )
u Encrypt/decrypt at 9.2 Kbits/second

(13535 cycles/block;
 from actual implementation)

u Key setup in 27 milliseconds
u Only  176  bytes needed for table of

round keys.
u Fits on smart card (< 256 bytes RAM).

Custom RC6 IC
u 0.25 micron CMOS process
u One round/clock at 200 MHz
u Conventional multiplier designs
u 0.05 mm2 of silicon
u 21 milliwatts of power
u Encrypt/decrypt at 1.3 Gbits/second
u With pipelining, can go faster, at cost

of more area and power



RC6 Security Analysis

Analysis procedures
u Intensive analysis, based on most

effective known attacks (e.g. linear
and differential cryptanalysis)

u Analyze not only RC6, but also several
“simplified” forms (e.g. with no
quadratic function, no fixed rotation
by 5 bits, etc…)



Linear analysis
u Find approximations for  r-2  rounds.
u Two ways to approximate  A = B <<< C

– with one bit each of A, B, C       (type I)
– with one bit each of A, B only    (type II)
– each have bias  1/64; type I more useful

u Non-zero bias across f(B) only when
input bit = output bit.  (Best for lsb.)

u Also include effects of multiple linear
approximations and linear hulls.

Estimate of number of plaintext/ciphertext
pairs required to mount a linear attack.

(Only 2128 such pairs are available.)

Rounds Pairs
    8    247

    12    283

    16    2119

    20          RC6    2155

    24    2191

Security against linear attacks

Infeasible



Differential analysis
u Considers use of (iterative and non-

iterative) (r-2)-round differentials as
well as (r-2)-round characteristics.

u Considers two notions of “difference”:
– exclusive-or
– subtraction (better!)

u Combination of quadratic function and
fixed rotation by 5 bits very good at
thwarting differential attacks.

An iterative RC6 differential
u     A             B               C              D

    1<<16       1<<11          0               0
    1<<11        0               0               0
    0             0               0               1<<s
    0             1<<26         1<<s           0
    1<<26       1<<21         0               1<<v
    1<<21       1<<16          1<<v           0
    1<<16       1<<11          0               0

u Probability  =  2-91



Estimate of number of plaintext pairs
required to mount a differential attack.

(Only 2128 such pairs are available.)

Rounds Pairs
    8    256

    12    2117

    16    2190

    20          RC6    2238

    24    2299

Security against
    differential attacks

Infeasible

Security of Key Expansion
u Key expansion is identical to that of

RC5; no known weaknesses.
u No known weak keys.
u No known related-key attacks.
u Round keys appear to be a “random”

function of the supplied key.
u Bonus: key expansion is quite “one-

way”---difficult to infer supplied key
from round keys.



Conclusion
u RC6 more than meets the

requirements for the AES; it is
– simple,
– fast, and
– secure.

u For more information, including copy
of these slides, copy of RC6
description, and security analysis, see
   www.rsa.com/rsalabs/aes

               (The End)


